SAGE MNKY Dojo Integration
The SAGE MNKY agent integrates deeply with the Dojo platform to enhance learning experiences, manage knowledge resources, and provide personalized educational support. This document details how SAGE MNKY capabilities are leveraged within the Dojo learning environment.
Integration Overview
The Dojo platform serves as MOOD MNKY’s personalized learning and development environment. SAGE MNKY enhances the knowledge and learning aspects of this platform by:
Curating personalized learning paths tailored to individual interests and goals
Providing contextual knowledge at the moment of need
Facilitating community learning and knowledge sharing
Adapting content difficulty based on learner progress
Offering multi-modal learning approaches to accommodate different learning styles
Key Integration Points
Learning Path Engine SAGE MNKY powers the learning path engine with:
Personalized learning journeys Adaptive sequencing of content Progress tracking and milestone celebration Just-in-time learning recommendations
Knowledge Repository For knowledge management, SAGE MNKY enables:
Semantically organized content library Intelligent search and discovery Multi-modal content formats Knowledge graph relationship mapping
Community Facilitation SAGE MNKY enhances community learning with:
Guided discussion facilitation Group learning activities Knowledge sharing incentives Expert matchmaking for mentorship
Learning Assessment To measure progress, SAGE MNKY provides:
Comprehensive skill assessment Knowledge retention verification Practical application evaluation Learning effectiveness metrics
Learning Path Personalization
SAGE MNKY creates deeply personalized learning experiences within the Dojo platform:
Adaptive Learning Paths
The agent dynamically constructs and adapts learning paths based on individual needs:
The path personalization considers:
Learning preferences (visual, auditory, reading/writing, kinesthetic)
Pace preferences (comprehensive vs. accelerated)
Application goals (theoretical understanding vs. practical application)
Interest areas for contextually relevant examples
Learning history to avoid unnecessary repetition
Contextual Knowledge Delivery
SAGE MNKY delivers relevant knowledge exactly when needed:
import { useSageMnkyContext } from '@repo/sage-mnky-hooks' ;
function ContextualKnowledgePanel ({ currentTopic , learnerContext }) {
const {
contextualContent ,
isLoading ,
relatedConcepts ,
practicalApplications ,
commonQuestions ,
expandTopic
} = useSageMnkyContext ({
topic: currentTopic ,
learnerContext ,
depth: 'adaptive' ,
format: 'mixed-media'
});
return (
< div className = "knowledge-panel" >
< div className = "current-concept" >
< h2 > { contextualContent . title } </ h2 >
< p className = "description" > { contextualContent . description } </ p >
{ contextualContent . primaryContent && (
< div className = "primary-content" >
{ /* Renders appropriate content based on type */ }
< ContentRenderer
content = { contextualContent . primaryContent }
format = { contextualContent . format }
/>
</ div >
) }
</ div >
< div className = "knowledge-extensions" >
< div className = "related-concepts" >
< h3 > Related Concepts </ h3 >
< ConceptList
concepts = { relatedConcepts }
onSelect = { ( concept ) => expandTopic ( concept . id ) }
/>
</ div >
< div className = "applications" >
< h3 > Practical Applications </ h3 >
< ApplicationList applications = { practicalApplications } />
</ div >
< div className = "common-questions" >
< h3 > Frequently Asked Questions </ h3 >
< FAQAccordion questions = { commonQuestions } />
</ div >
</ div >
</ div >
);
}
Knowledge Repository Management
SAGE MNKY manages a comprehensive knowledge repository within the Dojo platform:
Content Organization and Retrieval
// Example content retrieval with SAGE MNKY
const knowledgeResults = await sageMnkyClient . retrieveKnowledge ({
query: "fragrance composition principles" ,
learnerContext: {
skillLevel: "intermediate" ,
interestAreas: [ "essential oils" , "natural perfumery" ],
learningHistory: [ "basic-scent-profiles" , "fragrance-families" ],
preferredFormats: [ "visual" , "interactive" ]
},
contentTypes: [ "article" , "video" , "interactive" , "assessment" ],
maxResults: 5 ,
includeMetadata: true
});
// Returns structured content with intelligent organization
// {
// primaryContent: { id: "frag-comp-101", type: "article", ... },
// relatedConcepts: [
// { id: "scent-layering", title: "Layering in Fragrance", relevance: 0.92 },
// { id: "top-notes", title: "Understanding Top Notes", relevance: 0.87 },
// ...
// ],
// supplementaryContent: [
// { id: "video-blending", type: "video", title: "Blending Demonstration" },
// ...
// ],
// practicalExercises: [
// { id: "ex-identify-notes", type: "interactive", difficulty: "intermediate" },
// ...
// ],
// knowledgeGraph: { nodes: [...], edges: [...] }
// }
Multi-modal Content Generation
SAGE MNKY creates and adapts learning content in multiple formats:
// Example content generation
const newContent = await sageMnkyClient . generateContent ({
topic: "Mindfulness in Daily Self-Care" ,
targetAudience: {
skillLevel: "beginner" ,
interests: [ "stress reduction" , "morning routines" ],
demographicContext: "working professionals"
},
contentFormats: [
{ type: "article" , length: "medium" , style: "conversational" },
{ type: "infographic" , focusAreas: [ "key steps" , "benefits" ] },
{ type: "guided-practice" , duration: "5min" , complexity: "simple" }
],
brandVoice: true ,
keyMessages: [
"Simplicity in practice" ,
"Integration with existing routines" ,
"Scientific benefits of mindfulness"
]
});
The generated content includes:
Consistent messaging across different formats
Format-appropriate structures optimized for learning
Accessibility considerations for diverse learners
Brand-aligned voice and tone
Appropriate complexity for the target audience
Knowledge Graph Visualization
For complex topics, SAGE MNKY provides knowledge graph visualization:
import { useSageMnkyKnowledgeGraph } from '@repo/sage-mnky-hooks' ;
function KnowledgeGraphVisualization ({ topicId , explorationDepth }) {
const {
graphData ,
isLoading ,
focusedNode ,
expandNode ,
collapseNode ,
pathToMastery ,
highlightPath
} = useSageMnkyKnowledgeGraph ({
rootTopicId: topicId ,
depth: explorationDepth ,
learnerContext: getCurrentLearnerContext (),
includeProgress: true
});
return (
< div className = "knowledge-graph" >
< div className = "controls" >
< button onClick = { () => highlightPath ( pathToMastery ) } >
Show Path to Mastery
</ button >
< ZoomControls />
< FilterOptions />
</ div >
< div className = "graph-container" >
{ isLoading ? (
< LoadingIndicator />
) : (
< InteractiveGraph
nodes = { graphData . nodes }
edges = { graphData . edges }
focusedNode = { focusedNode }
onNodeClick = { ( node ) => expandNode ( node . id ) }
learnerProgress = { graphData . progress }
/>
) }
</ div >
< div className = "focused-content" >
{ focusedNode && (
< NodeDetailPanel
node = { focusedNode }
relatedContent = { graphData . relatedContent [ focusedNode . id ] }
/>
) }
</ div >
</ div >
);
}
SAGE MNKY enhances community-based learning within the Dojo platform:
Discussion Facilitation
The agent actively facilitates meaningful discussions and knowledge sharing:
The facilitation includes:
Thoughtful prompts to deepen exploration
Connection building between related discussions
Expert identification to involve knowledgeable members
Respectful conflict mediation when opinions differ
Synthesis of key insights from complex discussions
Collaborative Learning Projects
SAGE MNKY guides collaborative projects for deeper learning:
import { useSageMnkyCollaboration } from '@repo/sage-mnky-hooks' ;
function CollaborativeLearningHub ({ projectId , memberIds }) {
const {
project ,
isLoading ,
members ,
learningGoals ,
contributionAreas ,
suggestedResources ,
progress ,
nextActions ,
assignTask
} = useSageMnkyCollaboration ({
projectId ,
memberIds ,
facilitationLevel: 'active'
});
return (
< div className = "collab-project" >
< div className = "project-header" >
< h2 > { project . title } </ h2 >
< p className = "description" > { project . description } </ p >
< GoalsList goals = { learningGoals } progress = { progress . goalProgress } />
</ div >
< div className = "collaboration-space" >
< div className = "member-section" >
< h3 > Team Members </ h3 >
< MemberList
members = { members }
contributions = { progress . memberContributions }
expertiseAreas = { project . expertiseMap }
/>
</ div >
< div className = "contribution-areas" >
< h3 > Contribution Areas </ h3 >
{ contributionAreas . map ( area => (
< ContributionCard
key = { area . id }
area = { area }
assignedMembers = { area . assignedMembers }
completionStatus = { area . completionStatus }
onAssign = { ( memberId ) => assignTask ( area . id , memberId ) }
/>
)) }
</ div >
</ div >
< div className = "facilitation-panel" >
< h3 > SAGE Insights </ h3 >
< ResourceSuggestions resources = { suggestedResources } />
< NextActionsList actions = { nextActions } />
< FacilitationChat projectId = { projectId } />
</ div >
</ div >
);
}
Learning Circles
SAGE MNKY supports ongoing learning communities focused on specific interest areas:
// Example learning circle creation
const learningCircle = await sageMnkyClient . createLearningCircle ({
topic: "Sustainable Fragrance Practices" ,
description: "A community exploring environmentally responsible approaches to fragrance creation and use" ,
learningObjectives: [
"Understand sustainable sourcing principles" ,
"Explore eco-friendly packaging innovations" ,
"Develop natural preservation techniques" ,
"Share waste reduction practices"
],
membershipCriteria: {
interestAreas: [ "sustainability" , "natural-fragrances" ],
minKnowledgeLevel: "beginner" ,
commitmentExpectation: "moderate"
},
facilitationSettings: {
sageMnkySupport: "active" ,
contentCadence: "weekly" ,
discussionPrompts: "twice-weekly" ,
expertSessions: "monthly"
},
resources: {
initialLibrary: [ "sustainable-basics" , "natural-ingredients-guide" ],
suggestedActivities: [ "sourcing-challenge" , "packaging-redesign" ]
}
});
Learning Assessment and Feedback
SAGE MNKY provides comprehensive assessment capabilities to measure learning effectiveness:
Knowledge Assessment
The agent offers various assessment approaches to evaluate understanding:
// Example assessment generation
const assessment = await sageMnkyClient . createAssessment ({
topicArea: "Aromatherapy Fundamentals" ,
learnerProfile: {
skillLevel: "intermediate" ,
learningHistory: [ "essential-oils-101" , "scent-psychology" ],
preferredFormats: [ "interactive" , "application-based" ]
},
assessmentType: "mixed" ,
components: [
{ type: "knowledge-check" , questionCount: 5 , format: "multiple-choice" },
{ type: "case-analysis" , scenario: "sleep-improvement" , format: "short-answer" },
{ type: "practical-application" , task: "blend-recommendation" , format: "structured-response" }
],
adaptiveDifficulty: true ,
showFeedback: "immediate" ,
estimatedDuration: "15min"
});
The assessment includes:
Varied question types to evaluate different cognitive levels
Real-world application scenarios for authentic assessment
Adaptive difficulty based on performance
Immediate feedback with learning opportunities
Comprehensive results with growth recommendations
Progress Visualization
SAGE MNKY provides clear visualization of learning progress:
import { useSageMnkyProgress } from '@repo/sage-mnky-hooks' ;
function LearningProgressDashboard ({ learnerId , focusAreas }) {
const {
progress ,
isLoading ,
skillMastery ,
learningPatterns ,
milestones ,
recommendations ,
setTimePeriod
} = useSageMnkyProgress ({
learnerId ,
focusAreas ,
timePeriod: 'last-90-days'
});
return (
< div className = "progress-dashboard" >
< div className = "period-selector" >
< TimeRangeSelector
currentPeriod = "last-90-days"
onChange = { ( period ) => setTimePeriod ( period ) }
/>
</ div >
< div className = "mastery-overview" >
< h2 > Knowledge Mastery </ h2 >
< SkillRadarChart data = { skillMastery } />
</ div >
< div className = "achievement-timeline" >
< h2 > Learning Journey </ h2 >
< MilestoneTimeline milestones = { milestones } />
</ div >
< div className = "learning-insights" >
< h2 > Learning Insights </ h2 >
< PatternAnalysis patterns = { learningPatterns } />
< StrengthsWeaknesses data = { progress . strengths } />
</ div >
< div className = "next-steps" >
< h2 > Recommended Next Steps </ h2 >
< RecommendationList recommendations = { recommendations } />
</ div >
</ div >
);
}
Adaptive Feedback
SAGE MNKY provides personalized feedback on learning activities:
// Example feedback generation
const feedback = await sageMnkyClient . generateFeedback ({
submissionId: "sub_12345" ,
submissionType: "reflection-essay" ,
topic: "Personal Wellness Planning" ,
rubric: {
understanding: { weight: 0.3 , criteria: [ "concept-accuracy" , "depth" ] },
application: { weight: 0.4 , criteria: [ "personalization" , "practicality" ] },
reflection: { weight: 0.3 , criteria: [ "insight-quality" , "growth-orientation" ] }
},
learnerContext: await getLearnerContext ( "user_789" ),
feedbackStyle: "growth-oriented" ,
includeStrengths: true ,
includeDevelopmentAreas: true ,
suggestResources: true
});
The feedback approach focuses on:
Strengths-based commentary to reinforce positive aspects
Growth-oriented suggestions rather than deficiency-focused critique
Specific, actionable guidance for improvement
Contextually relevant examples to illustrate concepts
Forward-looking recommendations for continued development
Content Personalization Framework
SAGE MNKY implements a sophisticated framework for content personalization:
Learner Model
The model captures:
Knowledge state across different domains
Learning preferences for content format and pace
Interest patterns to guide topic selection
Time and engagement patterns for optimal delivery
Social learning preferences for community integration
Content Adaptation Engine
// Example content adaptation
const adaptedContent = await sageMnkyClient . adaptContent ({
baseContentId: "cont_wellness_intro" ,
learnerContext: {
id: "user_789" ,
skillLevel: "beginner" ,
attentionCapacity: "limited" , // e.g., busy professional
interestAreas: [ "stress-management" , "sleep-improvement" ],
learningPreferences: {
format: [ "visual" , "brief-text" ],
examples: "practical" ,
complexity: "accessible" ,
tone: "encouraging"
}
},
adaptationParameters: {
lengthAdjustment: "condense" ,
complexityAdjustment: "simplify" ,
exampleStyle: "real-world-application" ,
mediaPreference: "increased-visual"
}
});
The adaptation includes:
Length modifications based on available time and attention
Complexity adjustments to match comprehension level
Example customization aligned with interests and goals
Format transformation to preferred learning styles
Tone calibration to motivational needs
Personalized Learning Sequences
import { useSageMnkySequence } from '@repo/sage-mnky-hooks' ;
function PersonalizedLearningModule ({ moduleId , userId }) {
const {
sequence ,
isLoading ,
currentStep ,
progress ,
moveNext ,
movePrevious ,
jumpToStep ,
adaptStep
} = useSageMnkySequence ({
moduleId ,
userId ,
adaptationLevel: 'dynamic'
});
return (
< div className = "learning-module" >
< div className = "module-header" >
< h1 > { sequence . title } </ h1 >
< p className = "description" > { sequence . description } </ p >
< ProgressIndicator
steps = { sequence . steps . length }
current = { currentStep . index }
completed = { progress . completedSteps }
/>
</ div >
< div className = "content-container" >
< LearningStepContent
content = { currentStep . content }
interactions = { currentStep . interactions }
onInteraction = { ( data ) => adaptStep ( data ) }
format = { currentStep . format }
/>
</ div >
< div className = "navigation-controls" >
< button
onClick = { movePrevious }
disabled = { currentStep . index === 0 }
>
Previous
</ button >
< StepSelector
steps = { sequence . steps }
currentIndex = { currentStep . index }
completedSteps = { progress . completedSteps }
onSelectStep = { ( index ) => jumpToStep ( index ) }
/>
< button
onClick = { moveNext }
disabled = { ! currentStep . completed }
>
{ currentStep . isLast ? 'Complete' : 'Next' }
</ button >
</ div >
</ div >
);
}
Implementation Approaches
Embedded SAGE MNKY Interface
For learning environments, SAGE MNKY can be embedded directly in the interface:
import { SageMnkyProvider , useSageMnky } from '@repo/sage-mnky-hooks' ;
function LearningPage ({ contentId , userId }) {
return (
< SageMnkyProvider
userId = { userId }
context = { {
contentId ,
environment: 'learning'
} }
>
< ContentDisplay />
< SageMnkyAssistant />
</ SageMnkyProvider >
);
}
function SageMnkyAssistant () {
const {
assistant ,
knowledgeContext ,
askQuestion ,
exploreRelated ,
findResources ,
isVisible ,
toggleVisibility
} = useSageMnky ();
if ( ! isVisible ) {
return (
< button
className = "sage-mnky-toggle"
onClick = { toggleVisibility }
>
< SageMnkyIcon /> Learning Guide
</ button >
);
}
return (
< div className = "sage-mnky-assistant" >
< div className = "assistant-header" >
< img src = { assistant . avatar } alt = "SAGE MNKY" />
< h3 > Learning Guide </ h3 >
< button onClick = { toggleVisibility } > Minimize </ button >
</ div >
< div className = "learning-assistance" >
< div className = "common-actions" >
< button onClick = { () => askQuestion ( "Can you explain this concept?" ) } >
Explain This Concept
</ button >
< button onClick = { () => exploreRelated ( knowledgeContext . currentTopic ) } >
Show Related Topics
</ button >
< button onClick = { () => findResources ( "practical applications" ) } >
Find Practical Examples
</ button >
</ div >
< div className = "custom-question" >
< input
type = "text"
placeholder = "Ask about this topic..."
onKeyPress = { ( e ) => e . key === 'Enter' && askQuestion ( e . target . value ) }
/>
</ div >
</ div >
</ div >
);
}
Content API Integration
For seamless content personalization, the SAGE MNKY API can be integrated:
// Server-side content personalization
import { sageMnkyClient } from '@repo/sage-mnky-api' ;
async function getPersonalizedContent ( contentId , userId ) {
// Fetch base content
const baseContent = await dojoAPI . getContent ( contentId );
// Personalize with SAGE MNKY
const personalizedContent = await sageMnkyClient . personalizeContent ({
content: baseContent ,
userId ,
personalizationTypes: [
'examples' ,
'difficulty' ,
'format' ,
'supplementary_resources'
],
contentGoal: 'learning' ,
preserveCore: true
});
return personalizedContent ;
}
This approach allows:
Seamless enhancement of existing content
Server-side personalization for performance
Consistent content structure with personalized elements
Separation of concerns between content and personalization
Token Economy Integration
SAGE MNKY integrates with the token economy to incentivize learning:
Learning Rewards
// Example learning reward configuration
const rewardStructure = await sageMnkyClient . configureRewards ({
learningActivities: [
{
type: 'content_completion' ,
tokenReward: 5 ,
conditions: {
assessmentRequired: true ,
minimumScore: 70
}
},
{
type: 'knowledge_sharing' ,
tokenReward: 10 ,
conditions: {
qualityThreshold: 'medium' ,
helpfulnessVotes: 3
}
},
{
type: 'streak_maintenance' ,
tokenReward: 3 ,
conditions: {
daysRequired: 5 ,
minimumTimePerDay: 10 // minutes
}
},
{
type: 'challenge_completion' ,
tokenReward: 25 ,
conditions: {
difficultyLevel: 'intermediate' ,
timeConstraint: '7days'
}
}
],
bonusCategories: [
{
type: 'exceptional_contribution' ,
tokenReward: 50 ,
evaluationCriteria: [ 'originality' , 'depth' , 'community_impact' ]
},
{
type: 'learning_milestone' ,
tokenReward: 100 ,
milestones: [ 'domain_mastery' , 'certification_completion' ]
}
],
antiGamingMeasures: {
qualityChecks: true ,
distributionLimits: {
daily: 50 ,
weekly: 250
},
reviewProcess: 'automated_with_oversight'
}
});
Achievement Framework
import { useSageMnkyAchievements } from '@repo/sage-mnky-hooks' ;
function LearningAchievements ({ userId }) {
const {
achievements ,
isLoading ,
inProgress ,
completed ,
tokenRewards ,
milestones ,
recentlyUnlocked
} = useSageMnkyAchievements ({
userId ,
includeProgress: true
});
return (
< div className = "achievements-dashboard" >
< div className = "achievements-header" >
< h2 > Learning Achievements </ h2 >
< div className = "stats-summary" >
< StatCard label = "Achievements Unlocked" value = { completed . length } />
< StatCard label = "Tokens Earned" value = { tokenRewards . total } />
< StatCard label = "Current Streak" value = { achievements . currentStreak } />
</ div >
</ div >
{ recentlyUnlocked . length > 0 && (
< div className = "recently-unlocked" >
< h3 > Recently Unlocked </ h3 >
< AchievementList
achievements = { recentlyUnlocked }
showAnimation = { true }
/>
</ div >
) }
< div className = "achievement-categories" >
< AchievementCategory
title = "Knowledge Mastery"
achievements = { achievements . categories . knowledge }
progress = { inProgress . categories . knowledge }
/>
< AchievementCategory
title = "Community Contribution"
achievements = { achievements . categories . community }
progress = { inProgress . categories . community }
/>
< AchievementCategory
title = "Learning Habits"
achievements = { achievements . categories . habits }
progress = { inProgress . categories . habits }
/>
< AchievementCategory
title = "Special Achievements"
achievements = { achievements . categories . special }
progress = { inProgress . categories . special }
/>
</ div >
< div className = "learning-journey" >
< h3 > Learning Journey </ h3 >
< MilestoneRoadmap milestones = { milestones } />
</ div >
</ div >
);
}
Implementation Considerations
Content Quality and Currency
When implementing SAGE MNKY in Dojo learning environments:
Regular content audits to ensure accuracy and relevance
Version control for learning materials with clear update history
Source verification for factual information
Diverse perspective inclusion for comprehensive understanding
Timely updates for rapidly evolving topics
Learning Experience Optimization
For optimal learning experiences:
Cognitive load management through appropriate content chunking
Interleaved practice for better long-term retention
Spaced repetition for knowledge reinforcement
Multi-modal presentation for different learning styles
Just-in-time support for learning challenges
Privacy and Ethical Considerations
Maintain ethical standards through:
Transparent learning data collection with clear purpose
Learner control over personal data and profiles
Bias monitoring in content recommendations
Inclusive content design for diverse audiences
Clear attribution for community-contributed content
Future Enhancements
The SAGE MNKY and Dojo integration roadmap includes:
Advanced knowledge visualization using AR/VR technologies
Emotional learning support adaptive to learner states
Integrated expert-learner matching for personalized mentorship
Cross-domain knowledge synthesis for holistic understanding
Predictive learning interventions to prevent challenges
Development Resources
For developers implementing SAGE MNKY in Dojo environments: