CODE MNKY Dojo Integration
The CODE MNKY agent integrates with the Dojo platform to provide technical development support, learning assistance, and infrastructure optimization. This document details how developers can leverage CODE MNKY capabilities within the Dojo learning environment.
Integration Overview
The Dojo platform serves as MOOD MNKY’s personalized learning and development environment. CODE MNKY enhances the technical aspects of this platform by:
Supporting technical learning with code examples and explanations
Optimizing development environments for learning exercises
Providing automated code review for learning exercises
Generating technical documentation for educational content
Maintaining infrastructure for the Dojo platform itself
Key Integration Points
Learning Materials CODE MNKY enhances technical learning content with:
Interactive code examples that adapt to skill level Technical explanations with appropriate depth Best practice highlighting and explanations Language-specific nuances and insights
Exercise Environments For practical learning exercises, CODE MNKY provides:
Pre-configured development environments Consistent setup across platforms Project scaffolding for exercises Dependency management and troubleshooting
Code Assessment For evaluating learner code, CODE MNKY offers:
Automated code analysis and feedback Progress tracking against technical objectives Personalized improvement suggestions Security and performance evaluation
Platform Infrastructure Behind the scenes, CODE MNKY manages:
Dojo platform deployment optimization Scaling resources based on learning needs Development environment provisioning Technical monitoring and alerting
Technical Learning Support
CODE MNKY enhances the technical learning experience within Dojo through several specialized capabilities:
Adaptive Code Examples
CODE MNKY dynamically adjusts code examples based on the learner’s skill level and learning goals:
The agent maintains a model of each learner’s:
Technical proficiency across different languages and frameworks
Conceptual understanding of programming concepts
Learning style preferences for code examples
Project interests for contextually relevant examples
Common mistakes to provide targeted guidance
Interactive Coding Environments
CODE MNKY powers the interactive development environments used for hands-on learning:
// Example environment configuration for a React learning module
const learningEnvironment = {
technology: "react" ,
skillLevel: "intermediate" ,
exerciseType: "component_development" ,
supportLevel: "guided" ,
codeMnkyConfig: {
// CODE MNKY specific configuration
assistanceLevel: "hints" , // hints, solutions, or real-time
analysisFeatures: [ "syntax" , "best_practices" , "performance" ],
interactiveElements: [ "code_completion" , "error_explanation" ],
generateTests: true ,
provideFeedback: true
}
};
These environments include:
Pre-configured setup with necessary dependencies
Scaffolded projects with the right structure for learning
Integrated testing to validate solutions
Real-time feedback on code quality and approach
Contextual hints when learners get stuck
Technical Documentation Generation
CODE MNKY automatically generates and maintains documentation for technical content within the Dojo platform:
API Documentation
For Dojo platform APIs and learning exercises, CODE MNKY generates comprehensive documentation:
import { useCodeMnkyDocs } from '@repo/code-mnky-hooks' ;
function APIDocumentationComponent ({ apiId , audienceLevel }) {
const {
documentation ,
isLoading ,
examples ,
interactive ,
generateCustomExample
} = useCodeMnkyDocs ({
entityType: 'api' ,
entityId: apiId ,
level: audienceLevel ,
includeExamples: true
});
return (
< div className = "api-documentation" >
< h2 > { documentation . name } </ h2 >
< p className = "description" > { documentation . description } </ p >
< div className = "endpoint-details" >
< EndpointMethod method = { documentation . method } />
< EndpointPath path = { documentation . path } />
</ div >
< div className = "parameters" >
< h3 > Parameters </ h3 >
< ParameterTable parameters = { documentation . parameters } />
</ div >
< div className = "response" >
< h3 > Response </ h3 >
< ResponseSchema schema = { documentation . responseSchema } />
</ div >
< div className = "examples" >
< h3 > Examples </ h3 >
{ examples . map ( example => (
< CodeExample
key = { example . id }
language = { example . language }
code = { example . code }
description = { example . description }
/>
)) }
< div className = "custom-example" >
< h4 > Try with your own parameters </ h4 >
< ParameterForm
schema = { documentation . parameters }
onSubmit = { ( params ) => generateCustomExample ( params ) }
/>
{ interactive . customExample && (
< CodeExample
language = "javascript"
code = { interactive . customExample }
runnable = { true }
/>
) }
</ div >
</ div >
</ div >
);
}
Architecture Documentation
CODE MNKY creates and maintains architectural documentation for technical learning modules:
// Example architecture documentation generation
const architectureDoc = await codeMnkyClient . generateArchitectureDoc ({
projectType: 'e-commerce' ,
technologiesUsed: [ 'react' , 'node' , 'mongodb' ],
audienceSkillLevel: 'intermediate' ,
includeComponents: true ,
includeDiagrams: true ,
focusAreas: [ 'data-flow' , 'authentication' , 'deployment' ]
});
This documentation includes:
System diagrams showing component relationships
Data flow visualizations for understanding application logic
Deployment architecture explanations and diagrams
Component hierarchies for frontend applications
Database schema documentation and relationship diagrams
Code Assessment and Feedback
CODE MNKY provides automated assessment for coding exercises in the Dojo platform:
Code Analysis Pipeline
The assessment includes:
Functional correctness verification through test cases
Code quality evaluation against industry standards
Performance analysis with optimization suggestions
Security vulnerability detection and remediation guidance
Best practice recommendations relevant to skill level
Personalized Feedback Delivery
CODE MNKY tailors feedback based on the learner’s profile and learning path:
import { useCodeMnkyFeedback } from '@repo/code-mnky-hooks' ;
function CodeFeedbackComponent ({ submissionId , userId }) {
const {
feedback ,
isLoading ,
codeQuality ,
detailedIssues ,
suggestedFixes ,
applyFix
} = useCodeMnkyFeedback ({
submissionId ,
userId
});
return (
< div className = "code-feedback" >
< div className = "summary" >
< h2 > Code Assessment </ h2 >
< FeedbackSummary
passing = { feedback . passing }
score = { feedback . score }
highlightAreas = { feedback . highlightAreas }
/>
</ div >
< div className = "quality-metrics" >
< h3 > Code Quality </ h3 >
< QualityGraph metrics = { codeQuality } />
</ div >
< div className = "issues" >
< h3 > Areas for Improvement </ h3 >
{ detailedIssues . map ( issue => (
< IssueCard
key = { issue . id }
title = { issue . title }
description = { issue . description }
lineNumbers = { issue . lineNumbers }
severity = { issue . severity }
hasSuggestion = { issue . hasSuggestion }
onViewSuggestion = { () => selectIssue ( issue . id ) }
/>
)) }
</ div >
{ selectedIssue && (
< div className = "suggested-fix" >
< h3 > Suggested Solution </ h3 >
< CodeDiff
original = { suggestedFixes [ selectedIssue ]. original }
suggested = { suggestedFixes [ selectedIssue ]. suggested }
/>
< button onClick = { () => applyFix ( selectedIssue ) } >
Apply This Fix
</ button >
< button onClick = { () => requestExplanation ( selectedIssue ) } >
Explain This Fix
</ button >
</ div >
) }
< div className = "next-steps" >
< h3 > Next Steps </ h3 >
< LearningRecommendations recommendations = { feedback . nextSteps } />
</ div >
</ div >
);
}
Development Environment Management
CODE MNKY provides and manages development environments for technical learning:
Environment Provisioning
// Example environment provisioning request
const environment = await codeMnkyClient . provisionEnvironment ({
learningModule: 'full-stack-development' ,
technologies: [ 'react' , 'express' , 'mongodb' ],
learnerSkillLevel: 'beginner' ,
setupType: 'guided' ,
resourceRequirements: {
cpu: 'standard' ,
memory: 'medium' ,
storage: 'basic' ,
duration: '4hours'
}
});
// Returns details for connecting to the environment
// {
// accessUrl: 'https://env-12345.dojo.moodmnky.com',
// credentials: { username: 'learner', password: 'temporary-password' },
// vscodeUrl: 'vscode://dojo-remote/env-12345',
// expirationTime: '2023-07-15T16:30:00Z',
// resourceIds: { containerId: 'cont_12345', projectId: 'proj_6789' }
// }
These environments are:
Pre-configured with all necessary dependencies
Isolated for security and consistency
Resource-appropriate based on exercise requirements
Time-limited to manage platform resources
Persistent across sessions until completion
IDE Integration
CODE MNKY integrates with various IDEs to enhance the learning experience:
import { useCodeMnkyIDE } from '@repo/code-mnky-hooks' ;
function IntegratedIDEComponent ({ exerciseId , userId }) {
const {
ideInstance ,
isLoading ,
currentFile ,
fileTree ,
openFile ,
saveFile ,
runCode ,
testCode ,
terminalOutput ,
codeAssistance ,
toggleAssistance
} = useCodeMnkyIDE ({
exerciseId ,
userId ,
persistent: true
});
return (
< div className = "integrated-ide" >
< div className = "ide-header" >
< h2 > { ideInstance . exerciseName } </ h2 >
< div className = "controls" >
< button onClick = { runCode } > Run Code </ button >
< button onClick = { testCode } > Run Tests </ button >
< button onClick = { toggleAssistance } >
{ codeAssistance . enabled ? 'Disable' : 'Enable' } Assistance
</ button >
</ div >
</ div >
< div className = "ide-layout" >
< div className = "file-explorer" >
< FileTree
files = { fileTree }
onSelectFile = { ( filePath ) => openFile ( filePath ) }
currentFile = { currentFile }
/>
</ div >
< div className = "editor-container" >
< CodeEditor
file = { currentFile }
content = { currentFile . content }
onChange = { ( content ) => saveFile ( currentFile . path , content ) }
language = { currentFile . language }
assistance = { codeAssistance }
/>
</ div >
< div className = "output-panel" >
< h3 > Output </ h3 >
< Terminal output = { terminalOutput } />
</ div >
</ div >
</ div >
);
}
Technical Curriculum Development
CODE MNKY assists in the creation and maintenance of technical curriculum:
Curriculum Generation Assistance
// Example curriculum generation
const curriculumOutline = await codeMnkyClient . generateCurriculum ({
subject: 'Modern JavaScript Development' ,
audienceLevel: 'intermediate' ,
duration: '8weeks' ,
learningGoals: [
'Understand ES6+ features and usage' ,
'Build applications with modern frameworks' ,
'Implement effective testing strategies' ,
'Optimize for performance and accessibility'
],
includeExercises: true ,
includeAssessments: true ,
technologies: [ 'javascript' , 'react' , 'jest' , 'webpack' ]
});
The generated curriculum includes:
Module structure with logical progression
Learning objectives for each module
Practical exercises with varying difficulty levels
Knowledge assessments to validate understanding
Resource recommendations for additional learning
Exercise Generation
CODE MNKY creates targeted coding exercises for specific learning goals:
// Generate an exercise for a specific concept
const exercise = await codeMnkyClient . generateExercise ({
concept: 'state management in React' ,
difficulty: 'intermediate' ,
exerciseType: 'implementation' ,
constraints: {
timeToComplete: '30minutes' ,
prerequisites: [ 'basic-react' , 'javascript-fundamentals' ],
focusAreas: [ 'hooks' , 'context-api' ]
},
includeTests: true ,
includeSolution: true
});
// Returns a complete exercise package:
// {
// instructions: '# State Management Exercise\n\nIn this exercise...',
// starterCode: { 'src/App.js': '...', 'src/components/Counter.js': '...' },
// tests: { 'src/__tests__/Counter.test.js': '...' },
// solutionCode: { 'src/App.js': '...', 'src/components/Counter.js': '...' },
// hints: ['Try using the useState hook for...', 'Remember that context...'],
// learningResources: [{ title: 'React State Management', url: '...' }, ...]
// }
CODE MNKY provides infrastructure support for the Dojo platform itself:
The agent continually optimizes:
Server resource allocation based on learning patterns
Database performance for content delivery
Caching strategies for frequently accessed content
Network optimization for global learners
CDN configuration for media and interactive elements
Monitoring and Alerts
CODE MNKY maintains comprehensive monitoring for the Dojo platform:
// Example monitoring dashboard configuration
const monitoringDashboard = await codeMnkyClient . configureDashboard ({
environmentId: 'dojo-production' ,
metrics: [
{ name: 'active_learning_sessions' , threshold: 5000 , alertLevel: 'warning' },
{ name: 'environment_provision_time' , threshold: 30 , alertLevel: 'critical' },
{ name: 'exercise_assessment_latency' , threshold: 5 , alertLevel: 'warning' },
{ name: 'database_query_time' , threshold: 0.5 , alertLevel: 'critical' },
{ name: 'api_error_rate' , threshold: 0.02 , alertLevel: 'critical' }
],
visualization: 'comprehensive' ,
alertDestinations: [ 'operations_team' , 'slack_engineering' ]
});
Implementation Approaches
Embedded CODE MNKY Interface
For technical learning modules, CODE MNKY is often embedded directly in the interface:
import { CodeMnkyProvider , useCodeMnky } from '@repo/code-mnky-hooks' ;
function TechnicalLessonPage ({ lessonId , userId }) {
return (
< CodeMnkyProvider
userId = { userId }
context = { {
lessonId ,
environment: 'technical_learning'
} }
>
< LessonContent />
< CodeMnkyAssistant />
</ CodeMnkyProvider >
);
}
function CodeMnkyAssistant () {
const {
assistant ,
codeContext ,
askQuestion ,
getCodeSuggestion ,
runDiagnostics ,
isVisible ,
toggleVisibility
} = useCodeMnky ();
if ( ! isVisible ) {
return (
< button
className = "code-mnky-toggle"
onClick = { toggleVisibility }
>
< CodeMnkyIcon /> Technical Assistant
</ button >
);
}
return (
< div className = "code-mnky-assistant" >
< div className = "assistant-header" >
< img src = { assistant . avatar } alt = "CODE MNKY" />
< h3 > Technical Assistant </ h3 >
< button onClick = { toggleVisibility } > Minimize </ button >
</ div >
< div className = "code-assistance" >
< div className = "common-actions" >
< button onClick = { () => askQuestion ( "How do I solve this exercise?" ) } >
How do I solve this?
</ button >
< button onClick = { () => askQuestion ( "Explain this code" ) } >
Explain this code
</ button >
< button onClick = { runDiagnostics } >
Check my code
</ button >
< button onClick = { () => getCodeSuggestion ( codeContext . currentFile ) } >
Suggest improvements
</ button >
</ div >
< div className = "custom-question" >
< input
type = "text"
placeholder = "Ask a technical question..."
onKeyPress = { ( e ) => e . key === 'Enter' && askQuestion ( e . target . value ) }
/>
</ div >
</ div >
</ div >
);
}
API-Based Integration
For more seamless integration, the CODE MNKY API can be used:
// Server-side technical content enhancement
import { codeMnkyClient } from '@repo/code-mnky-api' ;
async function getEnhancedTechnicalContent ( lessonId , userId ) {
// Fetch base technical content
const baseContent = await dojoAPI . getLessonContent ( lessonId );
// Enhanced with CODE MNKY
const enhancedContent = await codeMnkyClient . enhanceTechnicalContent ({
content: baseContent ,
userId ,
enhancementTypes: [
'code_examples' ,
'technical_explanations' ,
'best_practices' ,
'common_pitfalls'
],
userSkillLevel: await getUserSkillLevel ( userId ),
languagePreference: await getUserLanguagePreference ( userId )
});
return enhancedContent ;
}
This approach allows:
Seamless enhancement of existing content
Personalized technical depth based on skill level
Language-specific examples based on preferences
Just-in-time generation of technical explanations
Implementation Considerations
Technical Accuracy and Currency
When implementing CODE MNKY in Dojo learning environments:
Regularly update technical content to reflect current best practices
Version-specific examples for different technology versions
Framework-specific guidance that acknowledges different approaches
Compatibility information for different platforms and environments
Scalable Resource Management
For optimal resource management:
On-demand environment provisioning rather than pre-allocation
Time-limited resource availability based on session activity
Tiered resource allocation based on exercise complexity
Shared environments for introductory content
Dedicated environments for complex learning modules
Security in Learning Environments
Maintain security through:
Isolated execution environments for code exercises
Resource limitations to prevent abuse
Code scanning for malicious patterns
Sandboxed network access for exercises requiring external services
Regular security updates for all learning environments
Future Enhancements
The CODE MNKY and Dojo integration roadmap includes:
Advanced pair programming with real-time AI assistance
Predictive learning paths based on skill development patterns
Collaborative learning environments for team-based technical exercises
AR/VR integration for visualizing complex technical concepts
Integrated certification preparation and skill verification
Development Resources
For developers implementing CODE MNKY in Dojo environments: